对数函数求导的方法
2024-04-23 21:31:25
1、利用反函数求导:设y=loga(x) 则x=a^y。
2、根据指数函数的求导公式,两边x对y求导得:dx/dy=a^y*lna
3、所以dy/dx=1/(a^y*lna)=1/(xlna)。
4、如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
5、一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
6、其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。
声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
- 上一篇:对数函数的导数知识点
- 下一篇:interesting的比较级和最高级
猜你喜欢
猜你喜欢
-
阅读量:90
-
阅读量:70
-
阅读量:44
-
阅读量:24
-
阅读量:44
-
阅读量:10
-
阅读量:26
-
阅读量:62
-
阅读量:93
-
阅读量:78