当前位置:首页 >指南 > 正文

三角形的内心有什么性质

2024-07-21 01:08:07

1、内心在△ABC三边距离相等,这个相等的距离是△ABC内切圆的半径;

2、若I是△ABC的内心,AI延长线交△ABC外接圆于D,则有DI=DB=DC,即D为△BCI的外心。

3、r=S/p(S表示三角形面积)证明:S△ABC=S△OAB+S△OAC+S△OBC=(cr+br+ar)/2=rp, 即得结论。

4、△ABC中,∠C=90°,r=(a+b-c)/2。

5、点O是平面ABC上任意一点,点O是△ABC内心的充要条件是:a(向量OA)+b(向量OB)+c(向量OC)=向量0。

6、点O是平面ABC上任意一点,点I是△ABC内心的充要条件是:向量OI=[a(向量OA)+b(向量OB)+c(向量OC)]/(a+b+c)。

7、△ABC中,A(x1,y1),B(x2,y2),C(x3,y3),那么△ABC内心I的坐标是:(ax1/(a+b+c)+bx2/(a+b+c)+cx3/(a+b+c),ay1/(a+b+c)+by2/(a+b+c)+cy3/(a+b+c))。

声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。

猜你喜欢

热门推荐