【抽象代数】向量空间的推广——模

2025-03-18 17:34:15

1、模的定义,这里只介绍交换环的模,因此不会涉及到左模或右模的概念。从下图的定义来看,模的定义和向量空间的概念很像,除了把域换成了环。

【抽象代数】向量空间的推广——模

2、环R本身也是一个R模。因为R是一个加法的Abel群,且自身保持乘法封闭。

【抽象代数】向量空间的推广——模

3、整数环Z的喋碾翡疼模V里面的某个元素记为v,给定整数正整数n,那么,我们可以给出n与v的乘积:nv=v+v+···+v其中的+是Abel群的合成法则。从这个意义上说,任何Abel群都可以视为Z模。

【抽象代数】向量空间的推广——模

4、整数环Z的自由模Z^n,视为n维向量的集合,但是这些向量的元素全都是整数。显然,Z^n是一个无限集合,或者说是一个无限的Abel群,因此它和任何有限的Abel群都是不同构的。

【抽象代数】向量空间的推广——模

5、环R的模V的子模是V的一个子集V',且保持加法和标量乘法下的封闭。

【抽象代数】向量空间的推广——模

6、类比于群和商群的概念,可以根据模的子模,给出类似的概念。

【抽象代数】向量空间的推广——模
声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
猜你喜欢