差函数y=x^3-x^4的图像示意图怎么画

2025-04-12 16:16:39

1、 函数y=x^3-x^4的定义域,根据函数特征,函数自变量可以取全体实数,即定义域为:(-∞,+∞)。

差函数y=x^3-x^4的图像示意图怎么画

2、 第二步,判断函数的单调性,函数y=2x^3-5x的单调性是函数的重要性质,反映了随着自变量的增加函数值的变化趋势,它是研究函数性质的有力工具,在解决比较大小、解决函数图像、值域、最值、不等式问题都有很重要的作用。

差函数y=x^3-x^4的图像示意图怎么画

3、 第三步,通过求解函数的二次导数,判定函数图像的凸凹性。先求出函数的拐点,再判断函数的凸凹性,进而得到函数的凸凹区间。

差函数y=x^3-x^4的图像示意图怎么画

4、 第四步,函数的极限,对于本题,主要是在正无穷处和负无穷处的极限,即求出函数在无穷处的极限。

差函数y=x^3-x^4的图像示意图怎么画

5、 第五步,函数五点示意图,结合函数的定义域,以及函数单调性、凸凹性列图表解析函数上的五点图如下表所示。

差函数y=x^3-x^4的图像示意图怎么画

6、 第六步,综合以上函数的定义域、值域、单调和凸凹性及极限等相关性质,结合函数的定义域,即可简要画出函数的示意图。

差函数y=x^3-x^4的图像示意图怎么画
声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
猜你喜欢