幂函数与指数和函数y=6×x^4+2^x的图像示意图
1、解析函数的定义域,函数为幂函数和指数函数的和,因幂函数和指数函数的定义域为全体实数,所以整体y的定义域为全体实数。
2、如果函数y=f(x)在区间D内可导(可微),若x∈D时恒有f'(x)>0,则函数y=f(x)在区间D内单调增加;反之,若x∈D时,f'(x)<0,则称函数y=f(x)在区间D内单调减少。
3、解析函数的凸凹性,计算函数的二阶导数,根据二阶导数的符号,进而判断函数的凸凹性。
4、如果函数的二阶导数大于0,那么函数在该区间内是凹函数;如果函数的二阶导数小于0,那么函数在该区间内是凸函数。
5、函数的极限,列举函数在正无穷大、负无穷大和原点处的极限。
6、根据本例函数的特征,函数部分点的五点图解析表如下:
7、综合以上函数的定义域、值域、单调性、凸凹性和极限等性质,函数的示意图如下。
声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
阅读量:20
阅读量:66
阅读量:50
阅读量:49
阅读量:33