画分数复合函数y=(3+2x.3-2x)^4的示意图步骤
1、分式函数分母不为0,结合分式函数的性质,由分母不为0,求解函数y=(3+2x.3-2x)^4的定义域。
2、计算出函数的一阶导数,并求出函数的驻点,根据驻点的符号,判断并求出函数y=(3+2x.3-2x)^4的单调区间。
3、通过函数的二阶导数,解析函数y=(3+2x.3-2x)^4的凸凹区间。
4、函数y=(3+2x.3-2x)^4在无穷端点处以及不定义点处的极限。
5、根据函数的定义域,以及函数y=(3+2x.3-2x)^4的驻点该点,函数上部分点解析表如下:
6、根据以上函数的定义域、凸凹性、极限、凸凹等性质,通过五点图法,解析函数y=(3+2x.3-2x)^4的示意图如下:
声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
阅读量:24
阅读量:60
阅读量:38
阅读量:40
阅读量:25