圆的切线方程 推导过程(思路即可)
设直帧霭绎郎线方程:y=k(x-x0)+y0
既然点在圆上,则圆心和切点连线的斜率k=(y0-b)/(x0-a) ,所以切线斜率:-1/k=(a-x0)/(y0-b) 所以切线方程:y=(a-x0)/(y0-b) *(x-x0)+y0
注意:求圆的切线,当已知切点时,用上述方法;当切点未知,即从圆外某点做切线,利用圆心到直线的距离等于半径求斜率。
研究切线以及切线的斜率方程,涉及几何、代数、物理向量、量子力学等内容。是关于几何图形的切线坐标向量关系的研究。分析方法有向量法和解析法。
扩展资料:
P和Q是曲线C上邻近的两点,P是定点,当Q点沿着曲线C无限地接近P点时,割线PQ的极限位置PT叫做曲线C在点P的切线,P点叫做切点;经过切点P并且垂直于切线PT的直线PN叫做曲线C在点P的法线(无限逼近的思想)。
说明:平面几何中,将和圆只有一个公共交点的直线叫做圆的切线.这种定义不适用于一般的曲线;PT是曲线C在点P的切线,但它和曲线C还有另外一个交点;相反,直线l尽管和曲线C只有一个交点,但它却不是曲线C的切线。
声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
阅读量:61
阅读量:50
阅读量:91
阅读量:78
阅读量:85