同构、同态、同痕、同调和同伦有何异同

2025-04-21 15:55:50

不一定;你看在G-{0,1}里面,有个拐的贼复杂的曲线,就同调于0,但是不同伦于0。

同构是在数学醑穿哩侬对象之间定义的一类映射,它能揭示出在这些对象的属性或者操作之间存在的关系。若两个数学结构之间存在同构映射,那么这两个结构叫做“是同构的”。一般来说,如果忽略同构对象的属性或操作的具体定义,单从结构上讲,同构的对象是完全等价的。

同构、同态、同痕、同调和同伦有何异同

常见的同构有:自同构,群同构,环同构,域同构,向量空间同构其中自同构定义为:存在E和F两个集合,且对于E、F各存在一种运算,我们记作(符号可更换)*和·,对于E、F,*、·分别封闭(即对于任意两个集合内的元素,进行运算之后依然为该集合的元素,详情见群论)。

我们说f是一个同构当且仅当f∈Γ(E,F) 和f是一个双射且对于E内的任意元素a,b都有f(a*b)=f(a)·f(b)。如果上面所描述的E、F为同一集合E,则说f是一个自同构。

声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
猜你喜欢