截长补短思想在几何证明中的应用

2025-04-27 00:01:50

1、例题:如下图所示,ABCD为正方形,E、F是BC、CD上的点,若角EAF=45度,求证BE+DF=EF.分析:由图可知:要计算两线段相加,缴赉丝别若能是两线段在同一条直线上,那么两线段相加,就变成了一条更长一点的线段。问题就变成了证明两条线段相等的问题,证明两线段相等,借助全等三角形的性质即可。以上基本就是截长补短思想在几何中的实际应用。

截长补短思想在几何证明中的应用
截长补短思想在几何证明中的应用

2、第一种补形:用圆规在线段FD的延长线上截取BE长的线段B1D,如下图所示,并连接AB1,即在DF线段上补上一段与BE相等的线段。

截长补短思想在几何证明中的应用

3、具体证明过程如下图所示:其基本思路为,借助两组三角形全等,证明线段B1F=EF,即可证明BE+DF=EF。

截长补短思想在几何证明中的应用

4、第二种补形:用圆规在线段EB的延长线上截取DF长的线段ED1,如下图所示,并连接AD1,即在BE线段上补上一段与DF相等的线段。

截长补短思想在几何证明中的应用

5、具体证明过程如下图所示:其基本思路为,借助两组三角形全等,证明线段ED1=EF,又因为ED1=BE+BD1=BE+DF即可证明BE+DF=EF。

截长补短思想在几何证明中的应用
声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
猜你喜欢