统计数据挖掘技术在CRM软件中的应用流程

2025-04-18 22:46:55

顾客获取。对大多数企业而言,发展新客户、扩大客户基础的确是企业成长的一种主要方式。通过数据挖掘实现顾客获取就是利用客户档案找出客户的一些共同特征,通过聚类分析对客户分群,再通过模式分析预测潜在客户。通过预测潜在客户对开发活动的反映,从中识别出反映积极的客户,帮助市场人员对潜在客户进行筛选,然后有针对性的进行营销活动。

客户细分。客户细分是根据企业需求,将客户划分为多个小的同质群体的过程。同属一个群体的客户往往有相似的需求,这样,营销人员就容易对其进行营销组合,有针对性的实施营销策略。客户细分中比较典型的数据挖掘技术是决策树和聚类分析方法。

交叉销售及预测。现代企业和客户之间的关系是经常变动的,交叉销售是使这种关系趋于稳定的一种手段。利用市场购物蓝图分析挖掘客户对产品的消费模式,找出客户最容易一起购买哪些产品,从而有效的决定产品组合、产品摆放等。利用序惯分析预测客户在买了某一样产品之后,多久就会买另一样产品。这样做的结果是:企业获得了更高的商业利润,客户得到了所需要的产品和服务,从而使双方达到双赢的状态。

顾客维系。随着获取新客户的成本不断提高,对企业而言,维系老客户,保持原有客户的价值就显得越发重要。在客户保持中,通常涉及三个数据挖掘模型,首先建立模型用来预测和识别潜在流失者,然后挖掘和识别潜在流失者中的黄金客户。最后对黄金客户中的潜在流失者进行分析挖掘,识别其行为模式,从而实行有针对性的营销策略以保持这些客户。

客户赢利性识别。对企业来说,客户的数量并非越多越好,而是能够给企业带来赢利的客户越多越好,因为不同客户的赢利能力对企业的贡献率是不同的。企业通过设置计算赢利能力的参数,利用数据挖掘对客户信息、客户历史交易记录和售后服务等信息进行分析,对客户进行分类,预测其未来的购买模式和购买行为。这样就可以在市场营销的过程中对有价值或潜在的客户投入更多精力和财力,向他们提供及时的个性化服务,既可以留住这些客户,又可以有针对性地开展交叉销售,提高其对企业的赢利能力。

声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
猜你喜欢