数学期望的性质有哪些

2025-03-23 16:21:28

数学期望的性质:

1、设X是随机变量,C是常数,则E(CX)=CE(X)。

2、设X,Y是任意两个随机变量,则有E(X+Y)=E(X)+E(Y)。

3、设X,Y是相互独立的随机变量,则有E(XY)=E(X)E(Y)。

4、设C为常数,则E(C)=C。

扩展资料:

期望的应用

1、在统计学中,想要估算变量的期望值时,用到的方法是重复测量此变量的值,然后用所得数据的平均值来作为此变量的期望值的估计。

2、在概率分布中,数学期望值和方差或标准差是一种分布的重要特征。

3、在古典力学中,物体重心的算法与期望值的算法近似,期望值也可以通过方差计算公式来计算方差:

数学期望的性质有哪些

4、实际生活中,赌博是数学期望值的一种常见应用。

参考资料来源:百度百科-数学期望

声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
猜你喜欢