【几何问题】二倍线段和二倍角问题一则

2025-04-09 20:39:22

1、设∠ADB=u,∠ACB=v,BD=1。那么AD和DE可以用u和v表示出来。

【几何问题】二倍线段和二倍角问题一则
【几何问题】二倍线段和二倍角问题一则

2、在△ADE里面使用正弦定理,AD/DE-Sin[2 v]/Sin[u+2 v]==0,用Mathe罪焐芡拂matica可以分解这个关系式:tt=TrigFactor[AD/DE-Sin[2 v]/Sin[u+2 v]]因为Csc[u-v]、Csc[u+2 v]、Sin[v]都不等于0,所以只能是:Sin[u+2v]-Sin[u-2v]-Sin[u]==0

【几何问题】二倍线段和二倍角问题一则

3、上面这个式子还可以进一步化简:FullSimplify[tt[[4]]/Cos[u]==0]结果是:2Sin[2 v]==Tan[u]

【几何问题】二倍线段和二倍角问题一则

4、步骤3的结论,转化为等价的几何关系是:AD^2=4BE*BC。

【几何问题】二倍线段和二倍角问题一则

5、假设AC的中点为F,那么,步骤4里面的结论可以变为:BF^2=BE*BC。这直接导致一个结论:BE=EF。

【几何问题】二倍线段和二倍角问题一则

6、在△AED里面,根据余弦定理,可以算出AD的长度:AD=Simplify[Sqrt职邗珩垃[4-4Cot[v]Tan[u]+Csc[v]^2 Tan[u]^2]再次结合步骤3里面的结论,有:A肛舀辨乔D=Simplify[AD/.Tan[u]->2Sin[2 v]]也就是,AD=2BE。

【几何问题】二倍线段和二倍角问题一则
声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
相关推荐
  • 阅读量:51
  • 阅读量:30
  • 阅读量:50
  • 阅读量:67
  • 阅读量:75
  • 猜你喜欢