【微分几何】怎么绘制空间曲线的密切平面

2025-04-21 08:13:18

1、给定曲线的参数方程:r[t_] := {Cos[3 t], Sin[2 t], t}aa = ParametricPlot3D[r[u], {u, -Pi, Pi}]

【微分几何】怎么绘制空间曲线的密切平面

2、我们要绘制曲线上经过点t=π/3的密切平面,先画出这个点的位置:aa = Show[ParametricPlot3D[r[u], {u, -Pi, Pi}, PlotStyle -> Blue], Graphics3D[{PointSize[0.02], Red, Point[r[Pi/3]]}]]

【微分几何】怎么绘制空间曲线的密切平面

3、密切平面有两个不平行的向量r'[t]和r''[t]确定,我们画出这两个向量:aa = Show[ParametricPlot3D[r[u], {u, -Pi, Pi}, PlotStyle -> Blue], Graphics3D[{PointSize[0.02], Red, Point[r[Pi/3]], Green, Arrow[{r[Pi/3], r[Pi/3] + r'[Pi/3]}], Orange, Arrow[{r[Pi/3], r[Pi/3] + r''[Pi/3]*0.16}]}]]

【微分几何】怎么绘制空间曲线的密切平面

4、然后确定密切平面的方程式:

【微分几何】怎么绘制空间曲线的密切平面

5、绘制密切平面:aa = Show[Parametr坡纠课柩icPlot3D[r[u], {u, -Pi, Pi}, PlotStyle -> Blue], ParametricPlot3D[{X, Y, Z} /. sol, {X, -Pi, Pi}, {Y, -Pi, Pi}, PlotStyle -> Opacity[0.2], PlotRange -> 1], Graphics3D[{PointSize[0.02], Red, Point[r[Pi/3]], Green, Arrow[{r[Pi/3], r[Pi/3] + r'[Pi/3]}], Orange, Arrow[{r[Pi/3], r[Pi/3] + r''[Pi/3]*0.16}]}]]

【微分几何】怎么绘制空间曲线的密切平面

6、一定要注意,上述的两个向量r'[Pi/3]和r''[Pi/3]一定不能平行,否则密切平面就无法确定了。还有,r'[t]和r''[t]未必是垂直的关系,如下图所示。

【微分几何】怎么绘制空间曲线的密切平面
声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
猜你喜欢