已知:三角形abc,求证:角a+角b+角c=180°证明方法有多种

2025-04-16 02:37:31

证明:

过点A作EF//BC。

∵EF//BC,

∴∠EAB=∠B,∠FA潮贾篡绐C=∠C(两直线平行,内错角相等),

∵∠BAC+∠EAB+∠FAC=180°(平角180°),

∴∠BAC+∠B+∠C=180°(等量代换),

即∠A+∠B+∠C=180°。

已知:三角形abc,求证:角a+角b+角c=180°证明方法有多种

三角形性质:

1 、在平面上三角形的内角和等于180°(内角和定理)。

2 、在平面上三角形的外角和等于360° (外角和定理)。

3、 在平面上三角形的外角等于与其不相邻的两个内角之和。

推论:三角形的一个外角大于任何一个和它不相邻的内角。

4、 一个三角形的三个内角中最少有两个锐角。

5、 在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。

6 、三角形任意两边之和大于第三边,任意两边之差小于第三边。

7、 在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。

8、直角三角形的两条直角边的平方和等于斜边的平方(勾股定理)。

*勾股定理逆定理:如果三角形的三边长a,b,c满足a²+b²=c² ,那么这个三角形是直角三角形。

9、直角三角形斜边的中线等于斜边的一半。

10、三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点。

11、三角形三条中线的长度的平方和等于它的三边的长度平方和的3/4。

12、 等底同高的三角形面积相等。

13、 底相等的三角形的面积之比等于其高之比,高相等的三角形的面积之比等于其底之比。

14、三角形的任意一条中线将这个三角形分为两个面积相等的三角形。

15、等腰三角形顶角的角平分线和底边上的高、底边上的中线在一条直线上(三线合一)。

16、 在同一个三角形内,大边对大角,大角对大边。

声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
猜你喜欢