线性代数,施密特正交化,方框中的式子表示什么怎么计算
分子分母分别是两个向量的内积分子 = (α2)^T (β1)
重要定理:
每一个线性空间都有一个基。
对一个n行n列的至梦蛭悝非零矩阵A,如果存在一个矩阵B使AB=BA=E(E是单位矩阵),则A为非奇异矩阵(或称可逆矩阵),B为A的逆阵。
矩阵非奇异(可逆)当且仅当它的行列式不为零。
矩阵非奇异当且仅当它代表的线性变换是个自同构。
矩阵半正定当且仅当它的每个特征值大于或等于零。
矩阵正定当且仅当它的每个特征值都大于零。
解线性方程组的克拉默法则。
判断线性方程组有无非零实根的增广矩阵和系数矩阵的关系。
扩展资料:
线性代数是一个成功的理论,其方法已经被应用于数学的其他分支。
模论就是将线性代数中的标量的域用环替代进行研究。
多线性代数将映射的“多变量”问题线性化为每个不同变量的问题,从而产生了张量的概念。
在算子的光谱理论中,通过使用数学分析,可以控制无限维矩阵。
声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
阅读量:71
阅读量:51
阅读量:30
阅读量:71
阅读量:57