利用函数极值与单调性证明不等式

2025-04-20 14:54:47

1、概述。 函数的单调性和极值是证明不等式的有力工具,利用导数通常可以方便常挢傣捅地判断单调性和极值,这就为本节证明一些难度稍大的不等式成为可能。(其中例1和例3为考研试题。)

2、结合函数的极限与连续性证明不等式。

利用函数极值与单调性证明不等式

3、对例1的评注。

利用函数极值与单调性证明不等式

4、综合利用中值定理证明不等式。

利用函数极值与单调性证明不等式

5、对例2的评注。

利用函数极值与单调性证明不等式

6、用二阶导数判断一阶导函数的单调性和极值。

利用函数极值与单调性证明不等式

7、对例3的评注。

利用函数极值与单调性证明不等式
声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
相关推荐
  • 阅读量:46
  • 阅读量:79
  • 阅读量:39
  • 阅读量:75
  • 阅读量:53
  • 猜你喜欢