巧用e^x构造辅助函数解罗尔定理证明题
1、“原函数法”的局限性。 在罗尔定理证明题中,“原函数法”是构造辅助函数的常用方法 ,但有些题目中直接使用此法会遇到困难。例如证明“f(ξ)+f'(ξ)租涫疼迟=0”,虽然我们可以“墨守成规”地构造g(x)=F(x)+f(x)(其中F'(x)=f(x)),但通常会由于缺乏F(x)函数值的信息而导致“卡壳”。
2、一个基础题目及其变式。
3、利用“指数类函数”构造辅助函数的例题。
4、利用e^(kx)构造辅助函数的方法总结,及一个难度较大的题目。
5、例3的解答。
6、例3的解题思路分析。
7、选读:本节所述的方法是如何想到的?
声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
阅读量:47
阅读量:40
阅读量:46
阅读量:95
阅读量:76