有界函数有极限吗

2025-04-07 22:53:52

有界脑栲葱蛸函数不一定有极限。有界函数是设f(x)是区间E上的函数,若对于任意的x属于E,存在常数m、M,使得m≤f(x)≤M,则称f(x)是区间E上的有界函数。其中m称为f(x)在区间E上的下界,M称为f(x)在区间E上的上界。

有界函数并不一定是连续的。根据定义,ƒ在D上有上(下)界,则意味着值域ƒ(D)是一个有上(下)界的数集。根据确界原理,ƒ在定义域上有上(下)确界。

一个特例是有界数列,其中X是所有自然数所组成的集合N。由ƒ(x)=sinx所定义的函数f:R→R是有界的。当x越来越接近-1或1时,函数的值就变得越来越大。

有界函数有极限吗

函数的性质:

1、单调性

闭区间上的单调函数必有界。其逆命题不成立。

2、连续性

闭区间上的连续函数必有界。其逆命题不成立。

3、可积性

闭区间上的可积函数必有界。其逆命题不成立。

以上内容参考百度百科—有界函数

声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
猜你喜欢