如果函数在某点不可导,该点的切线存在吗

2025-04-18 05:52:28

存在,存在斜率是可导的必要不充分条件。可导必须要存在极限。

几何上,切缏堋垌胯线指的是一条刚好触碰到曲线上某一点的直线。更准确地说,当切线经过曲线上的某点(即切点)时,切线的方向与曲线上该点的方向是相同的。平面几何中,将和圆只有一个公共交点的直线叫做圆的切线。

在高等数学中,对于一个函数,如果函数某处有导数,那么此处的导数就是过此处的切线的斜率,该点和斜率所构成的直线就为该函数的一个切线。

如果函数在某点不可导,该点的切线存在吗

性质定理:

圆的切线垂直于过其切点的半径;经过半径的非圆心一端,并且垂直于这条半径的直线,就是这个圆的一条切线。

判定定理

一直线若与一圆有交点,且连接交点与圆心的直线与该直线垂直,那么这条直线就是圆的切线。

一般可用:

1、作垂直证半径

2、作半径证垂直

声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
猜你喜欢