曲线的极坐标方程ρ=4sinθ化为直角坐标方程为______

2025-04-07 23:39:20

曲线的极坐标方程ρ=4sinθ化为直角坐标方程为x +(y-2)² =4

将原癀溢汾鲜极坐标方程ρ=4sinθ,化为:

ρ 2 =4ρsinθ,

化成直角坐标方程为:x² +y²-4y=0,

即x²+(y-2)²=4.

故答案为:x²+(y-2)²=4

曲线的极坐标方程ρ=4sinθ化为直角坐标方程为______

扩展资料

在数学中,极坐标系是一个二维坐标系统。该坐标系统中任意位置可由一个夹角和一段相对原点—极点的距离来表示。极坐标系的应用领域十分广泛,包括数学、物理、工程、航海、航空以及机器人领域。

在两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示。对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示。

参考资料:百度百科-极坐标方程

声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
相关推荐
  • 阅读量:56
  • 阅读量:82
  • 阅读量:47
  • 阅读量:24
  • 阅读量:93
  • 猜你喜欢