函数在一个区间有且仅有一个零点,是什么意思
函数在一个区间有且仅有一个零点的意思:当y=0时,只有一个x 与之对应。
函数在一个区间有且仅有一个零点,说明在这个区间上函数与x漭晦署犷轴只有一个交点,当y等于0时,该函数只有一个x与之对应,不可能再有第二个x与之对应,否则就有多个零点。
扩展资料:
若函数y=f(x)在闭区间[a,b]上的图像是连续曲线,并且在区间端点的函数值符号不同,即f(a)·f(b)≤0,则在区间[a,b]内,函数y=f(x)至少有一个零点,即相应的方程f(x)=0在区间[a,b]内至少有一个实数解。
一般结论:函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图像与x轴(直线y=0)交点的横坐标,所以方程f(x)=0有实数根,推出函数y=f(x)的图像与x轴有交点,推出函数y=f(x)有零点。
更一般的结论:函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的实数根,也就是函数y=f(x)的图像与函数y=g(x)的图像交点的横坐标,这个结论很有用。
参考资料:百度百科——函数零点
声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
阅读量:65
阅读量:49
阅读量:71
阅读量:25
阅读量:77