用Mathematica探索不等式问题一则
1、题目是:给定实数a和b,如果a+b=1,求证:(a + 2)^2 + (b + 2)^2 >= 25/2
2、这里使用机器证明。
3、反过来考虑,当(a + 2)^2 + (b + 2)^2 <= 25/2时,a+b的值域是多少?Mathematica给出的答案是,a+b最小值是-9,最大值是1。
4、原问题可以加强为:给定实数a和b,如果a+b>=1或者a+b<=-9,都有:(a + 2)^2 + (b + 2)^2 >= 25/2
5、当(a + 2)^2 + (b + 2)郏柃妒嘌^2 <= 25/2时,2a+3b的取值范围是:[-(5/2)*(4 + Sqrt[26]),5*(-4 + Sqrt[26])/2]
6、也就是说,当2a+3b的值在区间(-(5/2)*(4 + Sqrt[26]),5*(-4 + S孥恶膈茯qrt[26])/2)之外的时候,(锾攒揉敫a + 2)^2 + (b + 2)^2 >= 25/2恒成立。
声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
阅读量:69
阅读量:70
阅读量:46
阅读量:87
阅读量:77