抛物线方程
抛物线方程是指抛物线的轨迹方程,是一种用方程来表示抛物线的方法 。在几何平面上可以根据抛物线的方程画出抛物线。抛物线在合适的坐标变换下,也可看成二次函数图像。
抛物线表达式:y=ax²+bx+c(a≠0)的顶点坐标公式是(-b/2a,(4ac-b²)/4a) y=ax²+bx的顶点坐标是(-b/2a,-b²/4a)。
抛物线定义
平面内与一个定点F和一条直线l的距离相等的点的轨迹叫做抛物线,点F叫做抛物线的焦点,直线l叫做抛物线的准线,定点F不在定直线上。它与椭圆、双曲线的第二定义相仿,仅比值(离心率e)不同,当e=1时为抛物线,当0<e<1时为椭圆,当e>1时为双曲线。
一般式y=ax²+bx+c(a≠0)。提出a得y=a(x²+b/a x)+c。
配方得y=a(x+b/2a)²+(4ac-b²)/4a。令平方项为0 x=-b/2a y=(4ac-b²)/4a。
所以顶点坐标为 ﹛-b/2a,(4ac-b²)/4a﹜。
声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。