cosx分之一的不定积分是什么
解答如下:
^∫dx/cosx=∫cosxdx/(cosx)^2。
=迟嗵莘啃∫d(sinx)/[1-(sinx)^2]。
=∫d(sinx)/[(1+sinx)(1-sinx)]。
=1/2∫[1/(1+sinx)+1/(1-sinx)]d(sinx)。
=1/2[ln(1+sinx)-ln(1-sinx)]+C。
=1/2ln[(1+sinx)/(1-sinx)]+C。
相关信息:
函数的积分表示了函数在某个区域上的整体性质,改变函数某点的取值不会改变它的积分值。对于黎曼可积的函数,改变有限个点的取值,其积分不变。
某个测度为0的集合上的函数值改变,不会影响它的积分值。如果两个函数几乎处处相同,那么它们的积分相同。
对于一个函数f,如果在闭区间[a,b]上,无论怎样进行取样分割,只要它的子区间长度最大值足够小,函数f的黎曼和都会趋向于一个确定的值S,那么f在闭区间[a,b]上的黎曼积分存在,并且定义为黎曼和的极限S。
声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
阅读量:75
阅读量:47
阅读量:73
阅读量:27
阅读量:21