如何设计正交试验
1、基本简介:当分析因设计要求的实验次数太多时,一个非常自然的想法就是从析因设计的水平组合中,选择一部分有代表性水平组合进行试验。因此就出现了分式析因设计(fractional factorial designs)。正交设计的基本特点是:用部分试验来代替全面试验,通过对部分试验结果的分析,了解全面试验的情况。正交试验是用部分试验来代替全面试验,它不可能像全面试验那样对各因素效应、交互作用一一分析;当交互作用存在时,有可能出现交互作用的混杂。
2、正交表:正交表是一整套规则的设计表格。用L为正交表的代号,n为试验的次数,t为水平数,c为列数,也就是可能安排最多的因素个数。例如L9(34),它表示需作9次实验,最多可观察4个因素,每个因素均为3水平。一个正交表中也可以各列的水平数不相等,称它为混合型正交表,如L8(4×24) ,此表的5列中,有1列为4水平,4列为2水平。根据正交表的数据结构看出,正交表是一个t行c列的表,其中第j列由数码1,2,… Sj 组成,这些数码均各出现N/S 次。
3、正交表具有两条性质:(1)每一列中各数字出现的次数都一样多。(2)任何两列所构成的各有序数对出现的次数都一样多。所以称之谓正交表。
4、方案设计:安排试验时,只要把所考察的每一个因子任意地对应于正交表的一列(一个因子对应一列,不能让两个因子对应同一列),然后把每列的数字"翻译"成所对应因子的水平。这样,每一行的各水平组合就构成了一个试验条件(不考虑没安排因子的列)。例:某矿物气体还原试验中,要考虑还原时间(A)、还原温度(B)、气体流速(C)、还原气体比例(D)这四个因子对全铁合量X〔越高越好)、金属化率Y(越高越好)、二氧化钛含量Z(越低越好)这三项指标的影响。希望通过试验找出主要影响因素,确定最适工艺条件。 首先根据专业知以确定各因子的水平: 时间:A1=3(小时),A2=4(小时),A3=5(小时) 温度:B1=1000(℃),B2=1100(℃),B3=1200(℃) 流速:Cl=600(毫升/分),C2=400(毫升/分), C3=800(毫升/分) CO:H2:D1=1:2,D2=2:1,D3=1:1 这是四因子3水平的多指标(X、Y、Z)问题,如果做全面试验需3^4=81次试验,而用L9( 34)来做只要9次。具体安排如表3。
5、数据分析—方差分析:正交表的另一个好处是简化了试验数据的计算分折。还是以[例1]为例来说明。按照表2的试验方案进行试验,测得9个转化率数据。由总平方和与各因素平方和即可求得误差平方和,亦称剩余平方和。是总平方和减各因素平方和所得。如正交表有一空列,则该列的平方和就是误差平方和。但在正交表饱和试验的情况下,即所有各列全部排满时,误差平方和一般用各因素平方和中几个最小的平方和之和来代替,同时,这几个因素不再作进一步的分析。 自由度:φT=试验次数一1 φA,B…=水平数一1 φA×B=φA×φB φe=φT-φA-φB-……-φD